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ABSTRACT 

The  linearized  hydrodynamic  equations  for  storm  surges  are  solved  in  analytic  form  for a very  simple  model 
basin  and  an  arbitrary field of wind and  pressure  to  show  that  a  solution  can  be  obtained as an  integral of the  product 
of the  atmospheric  forcing  function  and  an influence function whose value  tends to  zero with  increasing  time lags. 
In  practical  cases  t,his  solution  can be computed  as  a  weighted  sum of the  meteorological  observations  during a short 
period before the  storm  surge  observation. 

A finite difference scheme for a slightly  more  goncral  basin is then  developed  and  the  solution  given  formally  in 
terms of a polynomial  involving  bot'h  vectors  and  matrices. I t  is shown that  this  solution is equivalent  to  the  analytic 
solution  and  that both are  equivalent  to  a  li~lear  function of the  meteorological  measurements of wind  and  pressure 
which  must be used to  obtain a descript,ion of any  actual  forcing  function for storm  surges.  The  technique  can be 
generalized to  provide  the  solution  for  basins of almost  any  shape. 

The difficulties and  uncertainties  involved  in  the  hydrodynamic  solution  are  discussed,  and  the  advantages of 
using  a  statistical  method  to  dc4erminc  the  solution of the  problem  when sufficient data  are  available  are shom-n. 

1. INTRODUCTION 

The rapid  development of high-speed stored-progrtm 
computers during  t'he  last  decade  has  led  to  a  rapid 
growth of numerical  rncthods  in  meteorological  research. 
Two distinct  lines of approach  have been followetl. One 
begins with  the  hydrodynamic  equations.  These  are 
truncated and modified as  necessary  to  meet,  the  require- 
ments of mathematical  and  computational  stability  and 
the storage  capacity of the  computer  being used  while 
still retaining  some of the original  physical  aspects of the 
problem. The  other  approach  is  statistical  in  origin  and 
is based on the  considerntion of a  large  number of possible 
predictors. The weights  assigned to  the  predictors  are 
determined from  a  multiple regression program.  Usudly 
a subset containing  the  best  or  most efficient predictors 
is selected from  the  original  set  for  practical  predictions. 

Of course, the  two  systems  are  not  entirely  independent 
for many of the  dynamic  models  contain  terms  analogous 
to the Reynolds  stress  terms which must  be  evaluated 
empirically and some  degree of physical  and d p a ~ n i c  
reasoning is usually  employed  in the selection of the 
possible predictors  in  the  statistical  models. 

Both approaches  have  several  distinct  advantages. 
The numerical  integration of the  hydrodynanlic  equations 
may be continuously  generalized  toward  a  bet'ter  descrip- 
tion of nature  as  computers become more  versatile  and 
man acquires  a  bet't'er  understanding of the  colnput'a- 
tional process. This  approach  has  the  capabilit5- of 
revealing much  useful  information  about  the  physical 
processes involved,  even  when  the  ult'ilnate  prediction 
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is not usefully  accurate.  However,  the  result can  be 
no  better  t'han  the  assumptions  employed  in  translating 
the physical  description of nature  into  mathematical 
terms. It can  be  considerably worse, for the  computa- 
tional  process  may  lead  to a growth or decay of energy 
which  can  be  confused  with  hydrodynamic  instability 
or  the  damping effect of friction. 

The  st'atistical  approach  has  much less ability  to  reveal 
the  underlying  physical processes involved  in  the phenom- 
ena  and  has  much less capability for generalization  to 
approach  a  better  description of nature.  However,  the 
ultimate  forecast  system  derived,  usually  in  the form of 
a  regression  equation  or  diagram,  leads  from  the  input 
(lata  to  the  forecast  by  a  much  shorter  route  than  that 
required  for t'lle dynamical  approach  and one  can  be 
reasonably  sure of making  the  most efficient use of the 
data and  theory a t  his  disposal.  Comput'ational  in- 
stabilities  can  develop  here  too,  but  t'hey  are  much less 
common.  The  statist'ical  program  may  and  often does 
have the  ability  to  discriminate  against  inferior assump- 
tions,  and  sonletirnes  makes  use of implicit  da,ta,  hidden 
correlations  not'  clearly  recognized,  which  serve to improve 
the  predictions.  The  agreement  between  t'he  results of 
the  statist'ical  calculations  and  the  observat'ions  may  be 
misleading. The  data used in  this  type of analysis, 
usutdly  time  series,  violate many of the basic  assumptions 
of classical statistical  t'heory  and  the  results of the  analy- 
sis may  be  more  or  less  significant  than  the classical 
t'heory  indicates.  Tests  wit'h  independent  data  are 
clearly  required  to  est'ablish the  acceptabilit'y of any 
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system  derived  in  this 111a11ner. The  sophistication of 
tlle system  should not exceed that justified by tlle  quality 
and quantity of the  data avttilable for  development'.  One 
must  renlelnber that an accidental  stratification of clats 
can  be as dnmaging t'o  the  resultant  prediction  system 
as a deliberate  attempt to force the  result's. 

I n  designing a forecast  syst'ern  for  practical  application 
by  either method it  is  essential  that  the  investigator  keep 
in  mind the quality and qumti ty  of the  input tlnt:L IikeIJ- 
to  be tlvuilable under  operational contlit,ions, or which 
can  reasonably be mzlde avttilable through  established 
procedures. Even a perfect'  computation scllernc  will 
have  little  value  for  forecasting if it' requires  input data 
t'hat  cannot be made  available  until  after the event one 
wishes to predict'. 

2. THE  STORM SURGE PROBLEM 

The  storm  surge is tlefined tls the difference between 
the actual  water level during :I storm  and  the level which 
would have existed in the absence of a storln. Storm 
surge  research  is generally  based  on the vertically  inte- 
grated  form of the  hydroti~-narrlic  equations, usuall\r in 
a linearized fornl.  Several  alternate  forms of the equa- 
tions have been  elnployctl, but the most  significant' 
difference  between  tlle various  forms  is  in  the degree of 
linearization and t'he  cor~vention  adopted  for de:tling with 
bottom  stress.  Only  the linearized form of the equrtt~iorls 
will be  considered in  this  paper arid thus tlle rllost general 
assumption that can be  nu~de  about the bot>torn  friction 
is  to assunle t,hat  it'  is  proportional to some weighted sum 
of t*he  surface  stress  and  the mea11 c,urrcnt velocity. 
That is 

Tb=kU'+8T,T (1) 

where T~ is the bottom stress; T ,  is the surface stress; 
u1 is  the mean current speed along  the  streamline; and 
k and e are  constants,  either or both of which ma?- be 
assumed to  vanish.  Derivations which justify  this 
assumption llnve been  givcn by Reid 191 and Weenink [12]. 

The  equations of rnotiolr and  continuity  then take tlle 
for111 

bU bh k --jV+gD -+--c=-- -+(l-e)%, ( 2 )  D bpn 
at bz D pu dz 

"+"+" bh bli bV =o 
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where U and V are  the  transports  along  tlle z and y 
axes; j is the Coriolis para~neter, j = 2 O  sin 4; 4 is latitude; 
0 is  the  earth's  angular  speed; h is  the  height of the  free 
water  surface  above  its  equilibrium position; {J is  tlle 
acceleration of gravity; D= D(z ,  y) is  the  equilibrium 
depth of the fluid; p ,  is the  atrnospberic  pressure; pu, 

is  the  density of the  water; =T,  and 17, are  t'he  surface 

wi1Id stresses itlorg  the z ant1 7~ axes. A derivation is 
given by  Welttnder [13]. 

S o  form of the  boundary corlttit'ion which  is rigorous 
fro111 both  the  physicd  and  nlathcnlatical  points of  view 
is h o w l .  Tt is usually  assumed,  however, that no fluid 
passes through the solid bounc-lnry when this is a coast; 
if the region being  investigated  is ;l bay or harbor, a 
portion of the  bountlary is fluid. This is  usually treated 
1))- assuuliug that the height or gradient of height remains 
constant,  at'  the fluid boundary.  Other conditions are 
sollletinles used. There  are  several  alternative methods 
of stittitlg the init'ial  conditions. All tlre equivalent to 
assalning tll:lt, two of the four qu:mtitics, the height, the 
derivative of the  height  with  time,  thc velocity, or the 
derirwtive of the velocity  with  tinle,  are  known  at the 
initial  tilnr. 

3. THE  INFORMATION  AVAILABLE  FOR  DETERMINING 
A SOLUTION 

Tlle for111  of equations (2)-(4)  above imply  that the 
pressure  glxtlient m d  wind stress fields are known as 
continuous funlctions of space ;lnd tilne.  This is never 
the case. Pressure observations  are usu:tlly obtained in 
the fornl of total pressrlrc at fixed points  in space. Con- 
titluous observations tire possible, but  the data are usually 
readi1)- ani lable  for cornputttt'ions only RS point functions 
in titlle ;IS welt :is in sptlce. Irlfornlation about the pres- 
sure gr:idient is  therefore  available only ~ L S  a linear 
furlctioll of the  absolute pressures :lt two  nearby locations, 

S o  s:ltisf:tctory system  for direct observations of the 
wind stress over watcr has yet bcen  developed, nor is 
tllere any unirersd agreement about the proper expres- 
sions  for relwting the wind stress  to  other tktrnospheric 
writtbles  that :we tlire.ctl>- observed. The most common 
;tssun~ption is that wind stress  is  proportional t'o the 
sqwre  of the wind speed at soltle st:md:Lrd  elevation 
above water, but, even whet1 this  convention  is adopted 
two other trouhlesonle details  arise. \?%on [15], [16] 
lists  the  results of 47 tletertninations of the coefficient of 
proportionalit)- as :djusted to stwntltlrd height of 10 
ulcters. The resulting  values of the drag coefficient for 
strong winds (about 40 kt'.)  varyfrotn 1.5X to 4X10-3. 
For light winds (ribout 10 kt.)  the range is 0.4X10-3 
to 6.2x But  this does not tell the whole story. 
Very few observations of the wind at  10  meters above the 
sea are avnilable, and  almost 1101le  of these was obtained 
during higll winds. Therefore the wind  velocity over 
water  must be based on an  extrapolation of values ob- 
served  over  land,  visual  estimates by sailors, or approx- 
imations based on some assurnption  about,  the relationship 
between the  surface wind over water and  the pressure 
gradient. In the  last case  one nlust also consider the 
gencrd t1efic.icnc.y in  pressure  observations  over  the sea. 

Although  the  quadratic  relation  between  the wind 
speed and wind stress is more widely adopted  than any 
other,  its tleriv:lt,ion is not entirelj-  satisfactory.  Sutton 
[lo], [ I ]  1, DrFclen [2] and ;x few workers i n  this field  prefer 
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to use some  exponent' of tlle wind  speed other  than  two 
(Neumann [7]). 'I'here is  some  empirical evidence to 
support  the  assumption of :a linear  relutionship  between 
the wind speed and  the wind stress. This mt1y result 
from some real differences hetween  laboratory m t l  field 
conditions or it may result from the  fact that  the rcl. n t '  Ive 
error in  wind  speed  squared  is  double  that ill the  first 
power of the wind speed. 

At  best,  the  pressure or wind ve1ocit:- or hot11 :we known 
only :Lt 21 snlall  number of' discrete  points,  usu:Jly a t  
discrete times, 1, 3, or 6 hours  apart'. The continuous 
or qu:tsi-conttinuous specification of the  pressurc and wind 
velocity or wind stress  nlust he  obtained  from  this  linlited 
information by some type of interpolation.  This is some- 
times accoruplished by fitting a11ttlytic. functions  to  the 
available empirical  data.  Although  such  functions  are 
frequently nonlineu  in  the  space  variables,  they are 
usually linear  in  the obscrv:itions. N o r e  oftcn  linear 
interpolation  is used. I f  wind observations  from  land 
based anemometers are used,  speeds  nlust  be increased 
somewhat to  account'  for  the drcre:\scd I'riction over 
water. If so~ncthing  akin to t l ~ e  gradient wind  is  used, 
speeds must  be decreased to  account  for  the  friction that 
does exist at,  t'he  surface. Thus  after tlte wind spced or 
pressure grtdient, has been ohtainctl,  two crrlpiricel 
corrections are  needcd, one to  adjust the  ohscrvctl value 
to that which  would be expected s t  the sttltldtlrtl height 
over wat'er and one to  convert  this  value of thc wind speed 
into wind stress. 

The st.andard  mttthetlltltical  trentnlentj of tilllc de- 
pendent differential equations  rcquires $1 k~ lo~ lc t lge  of the 
initial conditions  over  tllc whole space.  Actually  this  is 
never available  for  the prwcticwl storm  surge  probletll. One 
must "make do" with  observations of the  initial  conditions 
at one or a few points near the solid boundary. 'I'llus i t  is 
necessary  t,o find a solution i n  \~-hich t'lle error rcsultillg 
from an inadequate  description of the iltititll conditons 
will not increase with  time. 

It should  be  apparent' from the  abovr  that any attctllpt 
to fit a solution of the  hydrodynalnic  equations to observed 
data will contain a number of wssumptions and approxi- 
mations. 

4. SOLUTION METHODS 

It can be  shown  that  a11~-  met'hod of solving  cqu. n t '  lolls 
(2)-(4) with  observed  data  inputs  is  equivalent  to  the 
construction of a  regrcssion eyuat'ion expressing the  stornt 
surge at   any designated  location  as a linear  function of the 
initial conditions  and  the  n~cteorological  observations 
after the  init)ial  time.  hloreover a prwtical  lnethod  lllust 
not  suffer too  much  from  the  lack of detail  in t,he initial 
conditions and  should not require  the use of large volunlcs 
of data which add litt'le skill to  t'he  predictions. One 
might suspect that  if a best  set of coefficients exists for 
this regression equation  it  must  have  the desired character- 
istics. Proving  that'  t'his  is so is  somewhat  laborious tlnd 
will be at'tempted in three  stages. 

In the first stage the one-dimensional motion  in a 
rectangular  basin of constant  depth will be considered. 
This will be used to show  the general character of t,he 
solution  including  the  tendency for the  error  resulting 
from an  inadequate knowledge of t'he  initial  conditions  to 
decrease wit11 time.  The  solution will be  expanded  into 
:t series of eigenfunctions. Unfortunat'ely, i t  is not  easy 
to show that  the series of cigenfunctions has suitable 
convergence qualities. An appeal  to  mathematical  in- 
duction will be made t'o  show that  the  principal  qualitative 
features of the  solution  must  hold for basins of much  more 
general  character.  The method used is reasonably direct 
and is  not  readily generalizable to all of the  practical 
problems. 

In the second st'agc :I one-dimensional  numerical 1nodel 
of much  greater  applicability will be developed. This 
approach will lead to a solution  in  the  same  form as that 
obtained  from  the  first  arlalysis  but will be  free of any 
consideration of eigenlunctions,  thus elirninat'ing the 
fornnal problem of convergence  arising  from the  first 
step.  The  method will be  readily generalizable to two 
tlinlensions and will provide some additional  insight  into 
the  problems  involved.  Unfortunately,  it,  is  not well 
:dapted  to R display of the  general  character of the solution 
or to n proof that  the  error  resulting  from  inadequat'e 
knomledge of the  initial  conditions  tends  to zero with 
incretlsillg time. 

Both of the  above  approaches  lead to the  same form for 
the  regression equat>ion.  With  this  form well established, 
:L statistical process oC curve  fitting  can  be used for an 
evtlluation of the coefficients. This  procedure gives less 
physical  insight  than  either of the  first  two  methods of 
solution,  but if n sufficient amount of past  data is available, 
it  requires fewer assumptions  about,  the  phpics of the 
pro\)lem than either of t,he first two  methods  and is much 
sirllplcr f'ronl a computational  point of view. Subject  to 
the t1ssunlptiorls that  are common to  both  the  dynamic 
;u1(1 statisticnl anxlSsis, the  statistical derivat'ion gives 
assurance of n~:lxirnum use of the uvuilable data.  Errors 
 nay arise  when  t,he resultant  solution  is applied to  the 
predictiolls of wat'er levels produced by storms which 
differ greatly from those used in  the  derivation,  but 
neither of the  other two approaches eliminates this 
possibilit-.  An  understanding of all  three  derivations 
should nlinirnize the  possibility of >an unsuspected  error 
of this  kind. 

ANALYTIC SOLUTION 

The  equations of motion and continuity ( 2 )  and (4) 
suitable for A one-dimensional malysis  may be  written 
in  the fonn: 

bh dU -+"=o 
bt dx 



It is easy  to  show that  equation (4’) is satisfied by- defining 
h and v in  terms of a new  variable $, as follows 

h=-b#[dx U=b$[bt (9 

Substit’ution of ( 5 )  into ( 2 ’ )  gives 

where 

If the  boundary  conditions  are  t’aken  in  the  form 
U(0,t) = U(L,t)=O, #(x, t )  may be expressed in  the  form 

where the A,(t) are  given by  

and 

as can be shown by the  usual  procedures of Fourier 
analysis. 

Equation (9) can  be recognized as a standard forrll of 
the  equation  for a forced  harmonic oscillator with linear. 
damping. The solut,ion  can  be  given  in  t’he  form 

where a, is the  amplitude  and t ,  the  phase of any oscil- 
lation of mode n which may  have been  in existence a t  
time t=O. The  factor exp (-kt/2D), which is independent 
of n, in  the first term on the  right  shows  that  t’he effect’ of 
the  initial  conditions will tend  toward zero with  increasing 
time. I n  practice  one  can  insure  that  this will be  true 
within  a very  short  time by starting  the  calculation  during 
a period in which the  water level is almost const:tut for tl 

prolonged time so that all a,  are  small. 
If t’he  initial  conditions  are neglected, t’he irllportitrlt 

part of the  solution  can  be  obtained  in  the fornr 

sin a,(t-t’)B,(t’)dt’ sin c_ (12) ] ‘7 
and as $ is defined so that h= -b#/bz, we have 

sin .,(t- t’)B,(t’)dt’ cos ~ ] 
The B,(t) defined b ~ -  equation (10) may be interpreted 

as weighted space  means of the  atmospheric  forcing term 
+(x,  t ) .  

The W, ( t ’ )  may be  interpreted  as  weighting functions 
which  show  the effect of  the  atmospheric  forcing terms 
applied a t  time t’ on  the  height, of the  free  surface a t  time t. 
It can  be seen that  each W,L is  equal to  zero  when t-t’ 
equals zero,  rises to a maxinlum,  and  then oscillates around 
the  value zero with  decreasing  amplitude. I n  t’he deriva- 
tion of equation (13) the  depth  and  width  have been as- 
sumed  constant.  in  order t’o obtain a separation of the 
space  and  time  variables  and a relat’ively  simple form of 
the  analytic  solution. It is well known,  however,  that 
the  solution of a  differential equation is a cont’inuous func- 
tion of its coefficients. Therefore  the  actual solution, 
however difficult to obtttin in  analytic  form,  should differ 
but little  from (14) if t’he  depth  and  width  were allowed 
to  change slowly. That  is to  say,  any  small  change  in the 
law  governing  the  depth  and  width will produce only a 
small  change  in  the  solution.  This process can  be repeated 
continuously. The applictltion of this principle does not 
give us any quantitative  information  about  the solution 
lor natural  basins,  but  it’  does show us that  any solution 
t,o the  problem  must  be topologically similar  to a weighted 
sum of terms  sinlilar  to  those specified in  equation (14). 
The  derivation  presented is given only  for  one  space dirnen- 
sion, but t’lle  two-dinlensional  problem reduces to this 
when  there  are  no significant variations  in  the y  direction. 
The  continuation process can be ext’ended into  two dimen- 
sions as well as  into  the domtin of variable coefficients. 
This  line of reasoning is essential  to  the  subsequent devel- 
opment  only  in  that  it sllows that  the  initial conditions 
tmd the force applied  in  the  distant  past cease to  have any 
significant effect on  the  solution  aft’er some finit’e time. 
This could have been established  more  directly  by an 
appeal  to  physical  reasoning as showing  that’ nrly at’tenu- 
ating  factor  such as friction ultinultely  elinlinates all of 
the  initial  energy of a systetll. 

The  above  line of reasouing is useful,  however,  when we 
come t,o evaluate  the coefficients to be  determined em- 
pirically in a later  section, for i t  does  give us  some definite 
ideas  about  the possible shapes for t’he  weighting  functions 
which can arise in practical  problems, a t  least  to  the point 
that  some solutions which may arise  from poorly selected 
empirical  data  can  be rejecbed as unsuitable. 
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Equation (10) for  t'he B,(t) is  derived  with  the  assump- 
tion that +(x, t )  is known  as a continuous  function  for  the 
entire  basin  being  considered.  This is never  the  case  and 
+(z,t) must  be  replaced  by  some  sort of interpolation  pro- 
cedure  which will supply  approximations  to  the  true 
value, wherever  these  are  required,  which  are  consist'ent 
with the  known  values  from  observing  st'ations.  Normally 
one would  use a  linear  interpolation sc,heme and  in  this 
case the  integral  can  be  replaced by a  finite  sum of the  type 

B n ( t ) = C  aj,k,n+j.k(t) (16) 
k' 

where + j , k ( t )  is  the  value 01 +(x$)  at  station j and  time f .  
The subscript k is used to  identify  the  component of thz 
forcing term. k = l  corresponds  to  the wind stress  in  the 
x direction  and k = 2  corresponds to the  atmospheric 
pressure at'  station .j. Pressure  gradients will be deter- 
mined implicitly  from  the  pressure  values a t  two  or more 
stations. The expression  can be  extended to  t'wo dirnen- 
sions by  letting  k=3  identify  the wind stress  along  the y 
axis. The  subscript j is used t'o identify  the  observation 
station. The coefficients required  in  (16)  can  be  derived 
from the  assumed  interpolation  formula,  wind  stress  law, 
wind stress coefficient, and  friction coefficients, a t  least 
for the  simple  case on  which the  analytic  solution is based. 

The  integrals  in  equations (12), (13),  and (14) are 
derived under  the  assumption  that  the B n ( t )  are  known 
as continuous  functions of time.  Jn  practice  one  is  gen- 
erally restricted  to  observations  taken a t  discrete  times, 
usually no less than  one  hour  apart.  Therefore  it  is  gen- 
erally necessary to  interpolate  between  the  observation 
times to define a  continuous  function.  Thus  the  int'egral 
in equation (14) as well as t'hat  involved  in  equation  (10) 
can be expressed  no  better  than  as  a  finite  sum of the  type 

S,' w n ( t - t ' ) B n ( t ' ) d t ' = C  bi,n ~j ,k ,n+j ,k( t - iAt)  
i j 

!i 

(17) 

where At is the  interval  between  observations,  and i is the 
number of time  intervals  between  t'he  meteorological 
observation and  its effect on  the  water  level. 

Combining  equations  (13),  (16),  and  (17), we can now 
write the  equation  for  t'he  water  level  at  any  designated 
point as 

h(zo,t)=>: ct.j,k+j,k(t-iAt) (18) 
I; 
i d  

where 

~ i . j . k = C  -- bi,.aj,k,n COS ~ (19) 
s n  n s x o  

L n L ~n 

Convergence of the  sum  with  respect  to i is assured  from  the 
form  of the  integral  in  (12).  Convergence  with  respect 
t o j  and k is assured  because  there  are  only  a  finite  number 
of observation  stations  to  be  considered  and  only  two  or 
three meteorological  quant'ities  to  be  considered a t  each 

st'ation.  Convergence  with  respect t'o n can  be  inferred 
from  the  form of equation (10) but  cannot  be  rigorously 
est'ablished  for  all possible + ( x ,   t )  by  this  development. 
The coefficients ci, f ,  can  be  computed  from  the  assumed 
interpolation  formulae  and  assumed  wind  stress  law  and 
wind  stress  and  friction coefficients. 

NUMERICAL SOLUTION 

Several  methods  are  available for approximating  equa- 
tions  (2)  and  (4)  by  finite differences. Perhaps  the  most 
direct  and  most  frequently  employed is presented  by  the 
set 

where C is  volume transport; 

This  form of the  equations  is  readily  obtained  from  Platz- 
man [8] or  Welander [13]. It will be  assumed that proper 
stability  criteria  are  maintained. 

If 

i t  is possible to  eliminate U between  these  equations  to 
obtain 

If H ( x )  has  continuous  slope,  as i t  does  in  almost  all 
practical  cases,  condition (21) can  always  be achieved by 
choosing  sufficiently  small Ax. Thus  condition (21) does 
not  result  in  any  formal  difficulty  in  dealing  with  arbi- 
trary  depths. It, may  lead  to  serious  computational 
difficulties if the  equations  are  solved  by  conventional 
methods. 

Since U has  been  eliminated  in  equation (22) it is 
necessary to  restate  the  boundary conditions, (U(O)= 
U(L)  = O ) ,  as  functions of h. This  can  be accomplished 
by  setting U=O in  equation (2') and  using  the definition 
of FT given  below  (20) to  obtain 

yH(0)  T = F ?  
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and  expressing h at  the  boundaries  by 

(23)  

Other expressions could  be  used, but these  appear  to  be 
the  simplest. 

Equation (22)  expresses hm+2 as a funct'ion of h for  four 
earlier time  periods.  However, the  first  term in square 
brackets  can  be  recognized  as  the  equation  obtained by 
approximating b2hldt2 by  the  central differences of central 
differences, that  is by t'he expression 

- b2h h6"+2-2h7+h6"-2 
dt2" 
- 

4At2 

A better  approximation  could  be  expected from t'he  more 
usual expression 

b2h hg"+"2hl"+hl"-' 
&j=  At2 

Taking  advantage of this  equivalence  to  reduce  the five- 
term recursion formula  to  one  involving  only  three  t'ime 
steps  and  collecting  terms,  one  obtains  the  prediction 
equation 

hln+'=Alhln-'+~lh6"-n_l+Clhln+Glhg"++l+DZ*FT (24) 

where : 

An even more  compact  expression  can  be  obtained by 
introducing  the  matrices A, B, and D whose elements 
A t ,  p ,  B l ,  p ,  D l ,  are defined as follows:. 

B0,1=G 

Bo,Z=Q 
nl, l - l=E,  

Bz,t+1=Gl I Hz,1=C1 Q<l<L 

rjL,L-2=EL-, 
b'L,L-l=CLpl 
BL,L=GL-1 
B, ,  p = O  for a11 other  values of 1 and p 
I)". 0 = - 2AX/{)F10 
n,,,=IA 
nl,z=Dl 

~ L , L - I = D L - ~  

D l , , = Q  for a11 other  values of I and p 
L= 2AzlgHL 

This  permits the prediction  equation  to  be  rewritten in 
the for111 

h m+1 =&&Ih v - 1  f B h  "+D*Fm (26) 

where  the h's and the *E are vectors,  and A, B, and D 
are matrices. If h(z)  is known  for m=O and 1, and the 
meteorological  variables  are  known, h(z)  for  any  later 
time period can  be  found by  repeated  application of 
formultr (26) .  I t  llas  been  shown  above  t'hat  after a 
sufficient period of time  the effect of the  initial conditions 
vanishes.  Moreover,  one  usually  begins a set of storm 
surge  predictions  at'  a  time at. which  t'he initial  disturbance 
is a t  n rninimunl.  lherefore, we may disregard the 
initial  condit'ions and consider  only the influence of the 
atmosphere on H body of water which is initially a t  rest. 
A few iterations of (26)  are shown  below: 

h'=D*FO 
h2=RD*F0+D*F1 
h3=(A+B2)D*F0+BD*F1+D*F2 
h4= (AB+BA+B')D*F"+  (A+B2)D*F1+BD*F2+D*F3 

r ,  

(27) 

It is secn t'ht~t  the  vector h"+' takes  the  form 

hm+l=ivi*Fm-t (27') 

where A l i  is a matrix  polynomial  generated by  the re- 
peated  application of equation (26) .  The first  few Mi as 
t8akcn  from (27)  are 

L w 1 =  L) 
,M2= BD 
,!W= (A+B2)D 
_LC4= (AB+BA+B3)D 

If one considers  the  time  variations of h a t  a single 
value of x, say xO, equation (26)  can  be  written  in  the 
form 

h ( ~ 0 ,  t ) = C  am C c 1 . k  *Fl,k(t-mAt)  (28) 
m l . r  

Equation (28)  is similar  in  form  to  equation (18) 



except' that  it does not  have  to  be sununed over 7 1 .  ?'he 
coefficients a, and  can  be  computed fro111 the  form of 
the finite difference equnt'ions and the  assurllpt'ions n l d e  
about t'lle wind stress  and  bott'om  friction. S u t ~ ~ r ~ ~ a t i o n  
over j, the  locations  from which enlpiricd  data  are 
available, is rcplt~ced  by  sunmlat'ion  over I, the Jllesh 
points in  space. 'rhe number of Inesh points  requircd 
in the crllculation is  independent' of the rlurnber of lo- 
cations from  which data  are nvailable and is usual1.v 
much larger. The  forcing  function ut the  additional 
points must be obtained  from some type of interpoltttion 
between the  observing  stations.  Sumnuttion  over i ,  tlle 
observation intervals, is replaced by surmnwtion over m ,  
the computation  irltervds.  The  requirements of compu- 
tational stability  place a l l  upper h i t  on the COnlpUtti- 
tional interval  wl~ich is usually  much  smaller  than  tlle 
interval between  obscrvations. Again the missing e~l l -  

pirical data  must  be  supplied by some type of interpo- 
lation. 

If we interpolate in tilne aud spttce, to  obt.ain the vdues 
of *F(x , ,  t )  required  for  the nurrlerical solution  hut  not 
supplied by the observations, we obtain 

*F,*,(t-mA,t)=): f l i , j , ~ , ~ , ~ ~ ~ ' ~ , k ~ ~ - ~ ~ ~ t ~  (29) 
i 
j 

Subscripts c : ~ n d  o have been rrtlded to the A's in  this 
equation to  distinguish  between  computation  and  ob- 
servation intervals.  This  distinction is not  essential  to 
any of the  other  equations.  The coefficients can  be 
computed from  tlle  int'erpolation forrnultt used to supply 
the meteorological data  at  each  mesh  point  and  cornpu- 
tation time  from  the  more  limited  meteorological 
observations. 

By combining  equations (28 )  and (29) we obtain 

h(ro, t)=C el ,m 22 d i , j , k ,  z , J ' j , k ( t - i A t )  (30) 

where e l ,m=amcl ,k  
The interpolation  process,  although  necessary  for  the 

numerical solution of the  hydrodynamic  equations,  adds 
no new information.  Thcrcfore wye 111ay forrnally sutn 
over I and m to  obtain 

h(r0, t)=C.fi,j.,IF3,,(t"At) (31) 
where 

f i v j , k = x  e l , m ( j i , j . k ,  1.m 
1 
7n 

Equation (31) is similar  in  form  to (19) and (28 ) .  Like 
(19) it is to  be surnrned only  over  the  observation  points 
and observation t'inles. Like (28) it does not  have to  be 
summed over n. However, it contains  all of the  data 
available for  a  det'ernlinat'ion of the  solution,  but  none of 
the auxiliary functions  required by the process of solution. 
We may  therefore  assume that  this is the  result  that we 
would have  obtained by summing  equation (19) over n if 

docs not  require any unreasonable  assumptions  about 
the  bottom profile. The  practical difficulties which may 
have  attended  the  stipulation of mesh  lengths  short 
enough  to  sat'isfy  condition (21) have now  been formally 
elirninated. The coefficients f i , j , k  could be comput>etf 
from  the  hydrodynrmic  equations  and  the  assumptions 
necessary  for a numerical  solution  to  equat'ions (2')  and 
(4'). However,  many of the  assumptions, which must 
be  introduced  into  this process, although  reasonable,  are 
in  no  sense  unique.  Their use must  be justified a pos- 
teriori by comparison of t'he  computation  results  with 
observed data.  Therefore  the coefficients j i , j , k  deduced 
from  theory  and  assurnptions  are likewise not unique, 
and  as  their  ultimate  justification  must come  from  em- 
pirical  evidence,  one  is  led to consider t,he possibility of 
obtaining  them  directly  from  the  empirical  data. 

THE REGRESSION  EQUATION 

With  the  form of the regression  equation (31) well 
established  from  physical  and  mat~hematical considera- 
tions, we now  consider the  evaluation of the coefficients. 
As stated  above,  the  theoretical  derivation of the coeffi- 
cients,  although possible, is based  on  a  number of unveri- 
fiable  assumptions.  Several  sets of assumptions, whose 
relative  validity  cannot  be  determined  a  priori,  appear 
reasonable.  Consequently  there is no  method  for  deter- 
mining  that  any  set of coefficients derived  from  theoretical 
considerations will be  the  best possible. However, if a 
sufficiently  long  period of record is available  it  is possible 
to  use the  methods of linear  algebra  to  compute  the 
coefficients from  known  values of the  storm  surge  and  the 
rneteorological variables.  This  procedure would be ideal 
if the  theory were exact  and a sufficient number of exact 
observations were available.  Unfortunately,  the  theory 
is only  an  approximat,ion  and  many of the observations 
are  not  as  representative as one would like. Therefore, it 
is desirable  to use many  more  equations  than coefficients 
and  to  obtain  a  solution  in a least  squares sense. But  this 
procedure is identical  with  t'he  solution of a problem in 
multiple regression analysis,  and  the  original  hydro- 
dynamic  problem  has been converted  into  a  statistical 
problem. 

This  procedure  has a t  least  two  other  attract,ive  features. 
The  hydrodynamic  equations (2) and (4) are  greatly 
simplified and  fail  to recognize  some  physical causes for 
rises  in  sea level that  are  correlated  with pressure and 
wind  stress  in  much  the  same  way  as is the volume 
trtmsport.  For  example,  equation ( 2 )  implies that  the sea 
level will rise  in  regions of low  pressure  because of mass 
transport.  In  many  areas significant rises also occur due 
to  heavy  rainfall.  This is also correlated  wit'h low pres- 
sure,  and  a  correction  for  the effects of rainfall is included, 
although  concealed,  in  the coefficients of the pressure, term 
in  equation (24). Evidence is accumulating  that waves 
breaking  against  the  coast  can  make  a  significant  contribu- 

we had been  able to do so. Moreover,  this  derivnt'ion tion to  the  total  storm  surge  along  coast,s exposed to 
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violent wave  action.  This  phenomenon is significi111t 
only  when  high  waves are  approaching  t'he  coast;  t.hat is, 
for  the  most  part  only  during  strong  onshore winds. 
Thus  an  average  correction  for  this  condition also is 
included in the coefficients for the wind effect in equ :i t '  1011 

(24); the correlat'ion  procedure  therefore  makes  some 
allowances for  our  lack of physical  knowledge. I t  would 
be possible to  eliminate  these effects from  the  correlation 
procedure if exact expressions for t'hern were available. 
In  the  meantime  the implicit  recognition of these  factors 
by  the coefficient's derived by  thc  stat'istical  procedure is :I 

useful byproduct of the  procedure. 
Moreover,  as we have  seen,  t,he  dynamic  calculations 

require  a  redundancy  in  the  input  data, as the  number of 
calculat,ion points  for  which  data  are  needed is g e n e r d l ~  
much  greater  than  the  number of points  for which data  are 
available,  and  the  time  interval  employed in the calculn- 
tions is generally  much  smaller  than  the  interval  between 
successive observations.  Any  interpolation  procedure 
used must  generate  some  errors  in  the  data field, and no 
matter how  small  these rnay be  they  cannot be  cxpected to  
lead to  any  systematic  improvement  in  the  predictions. 

A significant  advantage of t,he regression method of 
computing  storm  surges is that  the  number of loc. '1 t '  lolls 

and  time  periods  for  which  predictions  are  made is deter- 
mined by  the  availability  and  real  need  for  data and not  by 
the  needs of the  computational  system.  A second 
advantage is that  the regression  equation uses only  the 
observed data  and does  not,  require any  interpolation in 
either  time  or  space.  This  great  reduction  in  arithmetic 
may  make  t'he  regression  technique  desirable  even when 
no past  data  are  available  for a statistical  determination 
of the coefficients. In  this case the coefficients for thc 
regression equation  can  be  computed by using  the  nurneri- 
cal  solution of the  hydrodynamic  equat'ions. 

Several  methods of accomplishing  this  could  be  sug- 
gested  and  a  detailed discussion of this  problem will be 
deferred to  a  lat'er  paper. 

5. EXTENSION T O  TWO SPACE DIMENSIONS 

The  extension of the  analytic  solution  to  two  space 
dimensions is not difficult if one  is willing to  restrict 
attention  to  rectangular  basins of constant  depth,  and 
neglect the  rotation of the  earth. I t  can  be  accomplished 
for  several  other  basins of rather simple  geometry. How- 
ever,  a  general  solution  which is applicable  to  natural 
basins is not  available.  Even  the  simplest  two-dimen- 
sional  solution  cannot  be  obtained  from  the foregoing 
development  in a straightforward  manner. 

The  numerical  solutions  can  be  obtained  in  a  straight- 
forward  manner  from  the  finite difference form of equa- 
tions (2)-(4). A finite difference expression for t'llese 
equations is given by Welander [13]. The extension of 
the  statistical  model  to  two  dimensions  can  be  accom- 
plished simply by extending  the  range of the index k 

to include  the  wind  stress  in  a  direction  normal  to the 
;c axis. 

The  algebra  required  for  the  cornput'ation of the matrix 
polynon~ials  required  for  a proof of the  validity of the 
method,  similar t80 t ' h t  given  above, would  be formidable 
but  it could be  carried  out. For the  present we  shall 
satisfy  ourselves by pointing  out  t'hat'  in  each  stage of 
the  calculations, h(z,y,t+At) is computed  as  a linear 
function of other  quantities,  each of which is defined in 
a similar  manner  until  ultimately  every  variable is a 
sum of the  forcing  funct'ions  for  earlier  times.  Thus it 
should  be possible in  principle  to  compute  the coefficients 
relating h(z,t) to  the sums of the  available met,eorological 
observations  for  earlier  times. 

The  statistical  method,  in  practice, is very similar to 
the influence method  described by Welander [13] and 
the  empirical  method  described  by Wilson [16]. The 
motivation is,  however,  quite  different,  and i t  is believed 
that the foregoing derivation  reveals  more of the under- 
lying  physical  and  mathematical  principles  behind the 
mcthod,  and  that  an  understanding of these principles 
should  guide  one  to  a  better select'ion of the possible 
predictors. Some of the  uncertainties  mentioned by 
Wilson [16] and  other  uncertainties discussed by Wilson 
and Harris [17] should  be  resolvable by the derivation 
given above. 

6. ALTERNATIVE  DERIVATIONS OF THE  BASIC 
EQUATION 

Two theoretical  derivations of equation (31) are given 
above.  One  may  arrive  at  the  same  destination  by several 
other  routes. For example,  one  may  regard  the body of 
water being  considered  as  a  linear  filter  whose  input is 
the time  series  observat'ions of the  pertinent meteorologi- 
cal variables  and whose output is the  variation of water 
level at  any  selected  locat'ion  bordering on or within the 
water  body. If the problem is viewed  in this way the 
techniques discussed by Wiener [14] are applicable. 
Wiener's  technique  was  developed  for  phenomena in 
wl~ich  future  events  are  only  incompletely determined 
by  past  events  because of fundarnent'al  physical principles. 
An  example of a  phenomenon of this  type  mentioned by 
Wiener is the  displacement of a molecule of fluid because 
of Brownian  motion.  Another  problem  familiar  in physi- 
cal  oceanography is that of providing an exact de- 
scription of sea  stat'e, h(z,y, tz) ,  at'  time t2 when  an exact 
descript'ion, h(z,y,tl) is given for time tl. 

The problem we are  considering  should  be completely 
tleterrninist'ic if complete  information  about  the initial 
conditions,  forcing  functions,  the  stress  laws,  and stress 
coefficients were  known  exactly,  and if the  linear theory 
were  completely  valid.  However, a certain indetermi- 
nacy  exists  because of incomplete  knowledge  in the initial 
conditions,  forcing  funct'ions,  physical  constants, and 
fundarnent'al  theory;  and  t'he  practical  situation is very 
much  like  that'  described  by  Wiener. If this  paper were 



being prepared  primarily  for  statisticians or communica- 
tion engineers, the  groups  addressed  by  Wiener,  it  might 
be better t'o use the  theory of time  series  as  a  starting  point. 
Certainly that  theory  can  contribute  significantly to an 
extension of the  results we have  obtained.  However, 
this paper is being  developed  for  hydrodynarnicists  and 
civil engineers,  and  the  development  given  above  appears 
to the  author  to  be t'he most'  natural. 

Equation (11) can  be recognized as  a  convolution 
integral involving  the  applied  force  and  the  eigenfunction 
of the  basin  being  discussed.  This  fact could be used 
as another  starting  point  for  the  developrnent of t'he 
theory. Without  doubt  other  approaches could be used 
and perhaps  some of them  have  been.  However,  the 
author is not'  acquainted  with  any  other  development 
which shows that  an exact  equivalence  can  be  developed 
between a  multiple  regression  technique  and  the  solution 
of a  set of linear  different'ial  equations whose  nonhorno- 
geneous terms  contain  empirical  functions. 

7. COMPUTATION OF THE  COEFFICIENTS BY THE 
LEAST  SQUARES  METHOD 

At least one additional  advant'age  can  be  sought  in  the 
statistical  evaluation of t'he regression coefficients. The 
meteorological dat,a  contain a great  deal of redundancy 
even when dtita are considered  only at  the scheduled 
observation times  and  existing  weather  stations.  One 
would suspect  that  predictions  nearly as good as the  best 
obtainable could  be  derived  from a regression equation 
which requires  only a small  fraction of the  available  data. 
It is desirable to  take  advantage of t'his  possibility in 
making routine  predict'ions,  as  reducing  the  amount of 
arithmetic not  only  reduces  the  amount of work  and  time 
involved, but also reduces t'hc chance of an  error  in  the 
calculat'ions. Statisticians  have been studying  the  prob- 
lem of det'errnining  t'he  best  set of prcdictors  from a 
larger set of possible predictors  for  several  years. A 
systematic procedure  for  accomplishing  t'his, culled a 
screening procedure,  was  described by  Wherry [18]. 
Later papers were  published by  Lubin  and Smnrnerfield 
[4]. The  procedure  was  applied to rncteorological prob- 
lems by  Miller [5] in  an  unpublished  paper  presented  in 
1956. He discussed the t>echnique  in  considerable  det'ail 
in a  report [6] which  received  limited  distribution  in 1958. 
The idea received  additional  development  and app1icat)iorl 
by several other  meteorologists  during  t,he  next few years 
and two papers  giving a description of the  mathernat~ical 
procedures involved  appeared  in  1959  (Aubert,  Lund, 
and Thornasell [I]; and  Klein, Lewis, and  Erlger [3]). 
The heart of the  method  as  applied in meteorology is a 
high-speed computer  program  for  computation of a  set of 
regression equations  based on an  increasing  number of 
independent variables  until  some cut-off point is reached. 

Several versions of the  technique  have been  ,used. 
The essential  feature,  common  to  all is that  the  computer 

is first  used t'o compute  the  means,  variances,  and co- 
variances of a  large  number of variables,  some of which 
are  regarded  as  "independent"  but  one  or  more of which 
are  assumed  to  be  linear  functions of some of the  others. 
In  considering  a  particular  dependent  variable,  the  in- 
dependent  variable  most  highly  correlated  with  this is 
determined  and  the regression equation  determined  by 
this variable is computed. In  the next  step,  the second 
independent  variable is select'ed in  such  a  way  that  the 
resulting regression equation will be  the  best  that could 
be obtained  wit'h  the  first  variable  already specified. 
Then  the  third  variable  is  selected  such  that  it will make 
the  rnaxirnun~  improvement  with  the  first  two  variables 
already  selected.  The  process is repeated  until  all  vari- 
ables  have  been  considered  or  until i t  is previously  ter- 
minat'ed by some progranmed decision process. Variables 
which  contribute no improvement  to  the  system  are 
discarded. 

If the t>heoret'ical  relation  between  the  dependent  and 
independent  variables  is  not  known,  the process is usually 
terminated  after a designated  number of coefficients have 
been  cornput"l  or  when  the  value of the theoretical 
significance of the  additional  variables  drops below  some 
previously specified value. If the  theoretical  form of the 
regression is known  from  other  considerations,  as  in  this 
problem,  it is worthwhile  to  consider  all possible predic- 
tors,  but  for  practical  considerations  one  may wish to use 
only  the  most efficient predictors  for  practical  prediction 
and  t'he  most  complete  equations  only for further  theoretri- 
cal  work. 

The basic  screening  program  has  been  altered  to  accept 
meteorological dat'a in  the form of hourly records of 
pressure,  wind  direction, and speed  as  available  in  the 
punch  card  decks at  the  National  Weather Records 
Center; to compute  the  wind  stress  along  two  orthogonal 
axes;  and  to  lag  these  in an arbitrary  manner  as  appears 
to  best  satisfy  the  requirements of the  above  development 
within  the  memory  capacity of the  IBM 7090. I t  is 
practical  to  consider  predictions  for  more  than  one  location 
and to consider the consequences of suppressing  certain 
data which may not  be  available a t  t'he  time of the fore- 
cast  during  a single examination of the  data. 

A report of the  application of this  procedure  to  practical 
storrn surge  problems is in  preparat'ion  for  publication. 
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